The influence of simulator input conditions on the wear of total knee replacements: An experimental and computational study
نویسندگان
چکیده
Advancements in knee replacement design, material and sterilisation processes have provided improved clinical results. However, surface wear of the polyethylene leading to osteolysis is still considered the longer-term risk factor. Experimental wear simulation is an established method for evaluating the wear performance of total joint replacements. The aim of this study was to investigate the influence of simulation input conditions, specifically input kinematic magnitudes, waveforms and directions of motion and position of the femoral centre of rotation, on the wear performance of a fixed-bearing total knee replacement through a combined experimental and computational approach. Studies were completed using conventional and moderately cross-linked polyethylene to determine whether the influence of these simulation input conditions varied with material. The position of the femoral centre of rotation and the input kinematics were shown to have a significant influence on the wear rates. Similar trends were shown for both the conventional and moderately cross-linked polyethylene materials, although lower wear rates were found for the moderately cross-linked polyethylene due to the higher level of cross-linking. The most important factor influencing the wear was the position of the relative contact point at the femoral component and tibial insert interface. This was dependent on the combination of input displacement magnitudes, waveforms, direction of motion and femoral centre of rotation. This study provides further evidence that in order to study variables such as design and material in total knee replacement, it is important to carefully control knee simulation conditions. This can be more effectively achieved through the use of displacement control simulation.
منابع مشابه
Investigation of Wear Behavior of Biopolymers for Total Knee Replacements Through Invitro Experimentation
The average life span of knee prosthesis used in Total Knee Replacement (TKR) is approximately 10 to 15 years. Literature indicates that the reasons for implant failures include wear, infection, instability, and stiffness. However, the majority of failures are due to wear and tear of the prosthesis. The most common biopolymer used in TKR is Ultra High Molecular Weight Polyethylene (UHMWPE). Pr...
متن کاملA comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements
A more robust pre-clinical wear simulation framework is required in order to simulate wider and higher ranges of activities, observed in different patient populations such as younger more active patients. Such a framework will help to understand and address the reported higher failure rates for younger and more active patients (National_Joint_Registry, 2016). The current study has developed and...
متن کاملEffect of joint laxity on polyethylene wear in total knee replacement.
Experimental simulator studies are frequently performed to evaluate wear behavior in total knee replacement. It is vital that the simulation conditions match the physiological situation as closely as possible. To date, few experimental wear studies have examined the effects of joint laxity on wear and joint kinematics and the absence of the anterior cruciate ligament has not been sufficiently t...
متن کاملThe influence of femoral condylar lift-off on the wear of artificial knee joints.
In vivo fluoroscopic studies of patients with total knee replacements (TKRs) have shown lift-off of the femoral condyles from the tibial insert. This study investigated the influence of femoral condylar lift-off on the ultra-high molecular weight polyethylene (UHMWPE) wear of fixed bearing (FB) and rotating platform mobile bearing (RP MB) total knee replacements, using a physiological knee join...
متن کاملA comparison between electromechanical and pneumatic-controlled knee simulators for the investigation of wear of total knee replacements
More robust preclinical experimental wear simulation methods are required in order to simulate a wider range of activities, observed in different patient populations such as younger more active patients, as well as to fully meet and be capable of going well beyond the existing requirements of the relevant international standards. A new six-station electromechanically driven simulator (Simulatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 230 شماره
صفحات -
تاریخ انتشار 2016